Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 8942024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38572145

RESUMO

The Lemon shark Negaprion brevirostris is an important species experiencing conservation issues that is in need of genomic resources. Herein, we conducted a genome survey sequencing in N. brevirostris and determined genome size, explored repetitive elements, assembled and annotated the 45S rRNA DNA operon, and assembled and described in detail the mitochondrial genome. Lastly, the phylogenetic position of N. brevirostris in the family Carcharhinidae was examined using translated protein coding genes. The estimated haploid genome size ranged between 2.29 and 2.58 Gbp using a k-mer analysis, which is slightly below the genome size estimated for other sharks belonging to the family Carcharhinidae. Using a k-mer analysis, approx. 64-71 % of the genome of N. brevirostris was composed of repetitive elements. A relatively large proportion of the 'repeatome' could not be annotated. Taking into account only annotated repetitive elements, Class I - Long Interspersed Nuclear Element (LINE) were the most abundant repetitive elements followed by Class I - Penelope and Satellite DNA. The nuclear ribosomal operon was fully assembled. The AT-rich complete mitochondrial genome was 16,703 bp long and encoded 13 protein coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Negaprion brevirostris is closely related to the genera Carcharhinus, Glyphis and Lamiopsis in the family Carcharinidae. This new genomic resources will aid with the development of conservation plans for this large coastal shark.


Assuntos
Genoma Mitocondrial , Tubarões , Animais , Tamanho do Genoma , Filogenia , DNA , Tubarões/genética
2.
BMC Genomics ; 25(1): 77, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243187

RESUMO

BACKGROUND: The Peruvian 'chanque' or Chilean 'loco' Concholepas concholepas is an economically, ecologically, and culturally important muricid gastropod heavily exploited by artisanal fisheries in the temperate southeastern Pacific Ocean. In this study, we have profited from a set of bioinformatics tools to recover important biological information of C. concholepas from low-coverage short-read NGS datasets. Specifically, we calculated the size of the nuclear genome, ploidy, and estimated transposable elements content using an in silico k-mer approach, we discovered, annotated, and quantified those transposable elements, we assembled and annotated the 45S rDNA RNA operon and mitochondrial genome, and we confirmed the phylogenetic position of C. concholepas within the muricid subfamily Rapaninae based on translated protein coding genes. RESULTS: Using a k-mer approach, the haploid genome size estimated for the predicted diploid genome of C. concholepas varied between 1.83 Gbp (with kmer = 24) and 2.32 Gbp (with kmer = 36). Between half and two thirds of the nuclear genome of C. concholepas was composed of transposable elements. The most common transposable elements were classified as Long Interspersed Nuclear Elements and Short Interspersed Nuclear Elements, which were more abundant than DNA transposons, simple repeats, and Long Terminal Repeats. Less abundant repeat elements included Helitron mobile elements, 45S rRNA DNA, and Satellite DNA, among a few others.The 45S rRNA DNA operon of C. concholepas that encodes for the ssrRNA, 5.8S rRNA, and lsrRNA genes was assembled into a single contig 8,090 bp long. The assembled mitochondrial genome of C. concholepas is 15,449 bp long and encodes 13 protein coding genes, two ribosomal genes, and 22 transfer RNAs. CONCLUSION: The information gained by this study will inform the assembly of a high quality nuclear genome for C. concholepas and will support bioprospecting and biomonitoring using environmental DNA to advance development of conservation and management plans in this overexploited marine snail.


Assuntos
Gastrópodes , Genoma Mitocondrial , Animais , Gastrópodes/genética , Gastrópodes/metabolismo , Elementos de DNA Transponíveis/genética , Tamanho do Genoma , Filogenia , RNA Nuclear/metabolismo , Caramujos/genética , Óperon , Ploidias
3.
PeerJ ; 11: e16328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901463

RESUMO

The plant family Balsaminaceae comprises only two genera, and they are a study in contrasts. While Impatiens is an impressively prolific genus, with over 1,000 species and more being discovered each year, its sister genus, Hydrocera, has one solitary species, H. triflora. The two genera also differ in geographic distribution and habitat type (Impatiens species are widely distributed in much of the Old World and N. America, while H. triflora is confined to wetlands specific to S. India, Sri Lanka, and SE Asia). Other contrasting features include plant habit, habitat, floral architecture, mode of seed dispersal, and a host of other traits. The family Balsaminaceae is therefore an excellent model for studying speciation and character evolution as well as understanding the proximal and evolutionary forces that have driven the two genera to adopt such contrasting evolutionary paths. Various species of the Impatiens genus are also commercially important in the ornamental flower industry and as sources of phytochemicals that are of medicinal and other commercial value. As a preliminary step towards studying the genomic basis of the contrasting features of the two genera, we have sequenced and assembled, de novo, the genome of an iconic Impatiens species from N. America, namely I. capensis, and report our findings here.


Assuntos
Balsaminaceae , Impatiens , Nanoporos , Balsaminaceae/genética , Ecossistema , Sri Lanka
4.
BMC Genomics ; 24(1): 527, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674108

RESUMO

BACKGROUND: The harsh conditions of high-altitude environments are known to drive the evolution of physiological and morphological traits in endothermic animals. These conditions are expected to result in the adaptive evolution of protein coding genes encoded in mitochondrial genomes that are vital for the oxidative phosphorylation pathway. In this study, we formally tested for signatures of adaptive evolution on mitochondrial protein coding genes in Tapirus pinchaque and other odd-toed ungulates inhabiting high-elevation environments. RESULTS: The AT-rich mitochondrial genome of T. pinchaque is 16,750 bp long. A phylomitogenomic analysis supports the monophyly of the genus Tapirus and families in the Perissodactyla. The ratio of non-synonymous to synonymous substitutions demonstrated that all mitochondrial genes undergo purifying selection in T. pinchaque and other odd ungulates living at high elevations. Over this negative background selection, Branch Models suggested that cox3 and nad6 might be undergoing stronger purifying selection than other mitochondrial protein coding genes. Furthermore, Site Models suggested that one and four sites in nad2 and nad5, respectively, could be experiencing positive selection. However, these results were supported by Likelihood Ratio Tests but not Bayesian Empirical Bayes posterior probabilities. Additional analyses (in DataMonkey) indicated a relaxation of selection strength in nad6, evidence of episodic diversifying selection in cob, and revealed episodic positive/diversifying selection signatures for two sites in nad1, and one site each in nad2 and nad4. CONCLUSION: The mitochondrial genome of T. pinchaque is an important genomic resource for conservation of this species and this study contributes to the understanding of adaptive evolution of mitochondrial protein coding genes in odd-toed ungulates inhabiting high-altitude environments.


Assuntos
Altitude , Genoma Mitocondrial , Animais , Teorema de Bayes , Perissodáctilos/genética , Proteínas Mitocondriais
5.
BMC Zool ; 8(1): 6, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37357313

RESUMO

BACKGROUND: The Caribbean spiny lobster Panulirus argus is heavily fished throughout its Greater Caribbean and Gulf of Mexico distribution, suggesting a heightened susceptibility to a fisheries collapse. In 2017, a nemertean worm, Carcinonemertes conanobrieni was described from ovigerous females of P. argus in Florida, USA. A year later, the presence of the same egg predator was recorded along the southern Caribbean coast (Colombia). The effect of this egg predator on the reproductive performance, including fecundity, embryo mortality, and reproductive output, of its host is unknown. This study tested whether C. conanobrieni affects embryo mortality, fecundity, and reproductive output in brooding females of P. argus. RESULTS: Artisan fishers caught 90 ovigerous lobsters near Pueblo Viejo, Magdalena, Colombia. Each ovigerous female was examined for the presence/absence of the egg predator. Lobster egg mortality (%), fecundity (nº eggs female-1), and reproductive output (%) were estimated. Prevalence of C. conanobrieni in the studied population was 87.78%. The mean intensity of C. conanobrieni (all life stages) in the population was 11.68 (± 1.98) egg predators per brood mass sample. Infected females brooding late-stage embryos exhibited lower fecundity, lower reproductive performance values, and higher embryo mortality compared to infected females brooding early-stage embryos. Embryo stage and worm infection level negatively impacted fecundity and reproductive output. Worm infection level and the number of adult nemertean worms also negatively affected embryo mortality. CONCLUSIONS: These results demonstrate an adverse effect of C. conanobrieni on the reproductive performance of P. argus. The interactive impact of this egg predator, natural stressors, and anthropogenic stressors on individual P. argus reproductive performance could facilitate losses at large-scale fisheries levels.

6.
Gene ; 873: 147478, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182558

RESUMO

The alligator snapping turtle Macrochelys temminckii is a culturally, ecologically, and evolutionary relevant species of conservation concern. In this study, we conducted a genome survey of M. temminckii. Using a low-coverage short read sequencing strategy, this study estimated the genome size, repetitive genome content, annotated and quantified repetitive elements, assembled the 45S rRNA DNA operon, and characterized in detail the mitochondrial genome of M. temminckii. Using a k-mer strategy, the estimated haploid genome size varied between 3.77 and 3.19 Gbp, which is within the range previously reported for other representatives of the family Chelydridae. Repetitive genome content estimates using different k-mers (21 to 51) indicated that more than 75 % of the genome of M. temminckii comprised repetitive elements. Taking into account only annotated repetitive elements, the most common repetitive elements were classified as Class I - Long Interspersed Nuclear Element (LINE) which were more abundant than Class I - Penelope and Class I - Long Terminal Repeat (LTR) Ty3 mobile elements. Less abundant repeat element families in the nuclear genome of M. temminckii included Class I - DIRS mobile elements and Satellite DNA. The nuclear ribosomal operon was partially assembled into three contigs, one encoding the complete ssrRNA gene, a second encoding the complete 5.8S rRNA gene, and a third comprising the full lsrRNA gene. The AT-rich complete mitochondrial genome was 16,570 bp long. These new genomic resources are of utmost importance to aid in the development of conservation plans for this iconic freshwater turtle.


Assuntos
Jacarés e Crocodilos , Genoma Mitocondrial , Tartarugas , Animais , Tartarugas/genética , Jacarés e Crocodilos/genética , Genoma Mitocondrial/genética , Evolução Biológica
7.
Genes (Basel) ; 14(3)2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36980929

RESUMO

The abundance of many large-bodied vertebrates, both in marine and terrestrial environments, has declined substantially due to global and regional climate stressors that define the Anthropocene. The development of genetic tools that can serve to monitor population's health non-intrusively and inform strategies for the recovery of these species is crucial. In this study, we formally evaluate whether whole mitochondrial genomes can be assembled from environmental DNA (eDNA) metagenomics scat samples. Mitogenomes of four different large vertebrates, the panda bear (Ailuropoda melanoleuca), the moon bear (Ursus thibetanus), the Java pangolin (Manis javanica), and the the North Atlantic right whale (Eubalaena glacialis) were assembled and circularized using the pipeline GetOrganelle with a coverage ranging from 12x to 480x in 14 out of 18 different eDNA samples. Partial mitochondrial genomes were retrieved from three other eDNA samples. The complete mitochondrial genomes of the studied species were AT-rich and comprised 13 protein coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a putative D-loop/control region. Synteny observed in all assembled mitogenomes was identical to that reported for specimens of the same and other closely related species. This study demonstrates that it is possible to assemble accurate whole mitochondrial chromosomes from eDNA samples (scats) using forthright bench and bioinformatics workflows. The retrieval of mitochondrial genomes from eDNA samples represents a tool to support bioprospecting, bio-monitoring, and other non-intrusive conservation strategies in species considered 'vulnerable', 'endangered', and/or 'critically endangered' by the IUCN Red List of Threatened Species.


Assuntos
DNA Ambiental , Genoma Mitocondrial , Metagenoma , Ursidae , Animais , Genoma Mitocondrial/genética , Ursidae/genética , Espécies em Perigo de Extinção , Fezes
8.
Gene ; 863: 147295, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804001

RESUMO

In the species-rich family Phyllostomidae, the genus Macrotus ('big eared' bats) contains only two species; Macrotus waterhousii, distributed in western, central, and southern Mexico, Guatemala and some Caribbean Islands, and Macrotus californicus, distributed in the southwestern USA, and in the Baja California peninsula and the state of Sonora in Mexico. In this study, we sequenced and assembled the mitochondrial genome of Macrotus waterhousii and characterized in detail this genome and that of the congeneric M. californicus. Then, we examined the phylogenetic position of Macrotus in the family Phyllostomidae based on protein coding genes (PCGs). The AT-rich mitochondrial genomes of M. waterhousii and M. californicus are 16,792 and 16,691 bp long, respectively, and each encode 13 PCGs, 22 tRNA genes, 2 rRNA genes, and a putative non-coding control region 1,336 and 1,232 bp long, respectively. Mitochondrial synteny in Macrotus is identical to that reported before for all other cofamilial species. In the two studied species, all tRNAs exhibit a 'typical' cloverleaf secondary structure with the exception of trnS1, which lacks the D arm. A selective pressure analysis demonstrated that all PCGs are under purifying selection. The CR of the two species feature three domains previously reported in other mammals, including bats: extended terminal associated sequences (ETAS), central (CD), and conserved sequence block (CSB). A phylogenetic analysis based on the 13 mitochondrial PCGs demonstrated that Macrotus is monophyletic and the subfamily Macrotinae is a sister group of all remaining phyllostomids in our analysis, except Micronycterinae. The assembly and detailed analysis of these mitochondrial genomes represents a step further to continue improving the understanding of phylogenetic relationships within the species-rich family Phyllostomidae.


Assuntos
Quirópteros , Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Quirópteros/genética , Filogenia , México , Sequência de Bases
9.
Gene ; 859: 147189, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657651

RESUMO

Scorpions are a group of arachnids with great evolutionary success that comprise more than 2,000 described species. Mitochondrial genomes have been little studied in this clade. We describe and compare different scorpion mitochondrial genomes and analyze their architecture and molecular characteristics. We assembled eight new scorpion mitochondrial genomes from transcriptomic datasets, annotated them, predicted the secondary structures of tRNAs, and compared the nucleotide composition, codon usage, and relative synonymous codon usage of 16 complete scorpion mitochondrial genomes. Lastly, we provided a phylogeny based on all mitochondrial protein coding genes. We characterized the mitogenomes in detail and reported particularities such as dissimilar synteny in the family Buthidae compared to other scorpions, unusual tRNA secondary structures, and unconventional start and stop codons in all scorpions. Our comparative analysis revealed that scorpion mitochondrial genomes exhibit different architectures and features depending on taxonomic identity. We highlight the parvorder Buthida, particularly the family Buthidae, as it invariably exhibited different mitogenome features such as synteny, codon usage, and AT-skew compared to the parvorder Iurida that included the rest of the scorpion families we analyzed in this study. Our results provide a better understanding of the evolution of mitogenome features and phylogenetic relationships in scorpions.


Assuntos
Aracnídeos , Genoma Mitocondrial , Humanos , Animais , Escorpiões/genética , Aracnídeos/genética , Genoma Mitocondrial/genética , Filogenia , Mitocôndrias/genética , RNA de Transferência/genética
10.
Gene ; 849: 146896, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122612

RESUMO

The infraorder Anomura is a species-rich clade of decapod crustaceans recognized by its remarkable disparity in terms of morphology, anatomy, ecology, physiology, and behavior. This study assembled and characterized the complete mitochondrial genomes of two anomuran species, the hermit crab Coenobita clypeatus and the mole crab Emerita talpoida. The AT-rich mitochondrial genomes of C. clypeatus and E. talpoida are 16,469 bp and 15,810 bp long, respectively, and are composed of 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes. A 1,390 bp and 553 bp long intergenic space is assumed to be the D-loop in C. clypeatus and E. talpoida, respectively. Mitochondrial synteny in C. clypeatus is identical to that reported in other congeneric hermit crabs while synteny in E. talpoida is identical to that described for the confamilial mole crab Stemonopa insignis. No major differences occur between the studied species and their respective congeneric / cofamilial species in terms of nucleotide composition and codon usage profiles of PCGs. Selective pressure analysis in PCGs, rarely conducted in anomuran crabs, indicate that all these mitochondrial PCGs experience purifying selection and that this purifying selection is stronger in some (i.e., cox family genes and cob) compared to other PCGs (e.g., atp8). Most of the tRNA genes exhibited a typical 'cloverleaf' secondary structure with few exceptions in the two studied species. In C. clypeatus, tRNA-Ser1 lacks the thymine pseudouracil cytosine (TΨC) loop while tRNA-Phe and tRNA-Tyr each exhibit a deletion of the dihydroxyuridine (DHU) loop but not the arm. In turn, in E. talpoida, tRNA-Phe and tRNA-Arg exhibit a deletion of the DHU loop but not the arm while tRNA-Ser1 lacks the TΨC arm. A phylogenomic analysis based on translated PCGs confirms the monophyly of the infraorder Anomura and retrieves most/all relationships at the superfamily and family level previously reported for anomurans. The analysis supports the monophyletic status of the families Albuneidae, Lithodidae, Coenobitidae, and Porcellanidae. In turn, the superfamily Paguroidea, and the families Paguridae and Diogenidae are polyphyletic.


Assuntos
Anomuros , Asteraceae , Genoma Mitocondrial , Humanos , Animais , Anomuros/genética , Genoma Mitocondrial/genética , Filogenia , Timina , RNA de Transferência/genética , Nucleotídeos , Citosina , Asteraceae/genética
11.
PeerJ ; 10: e14428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523460

RESUMO

The Amur or Siberian tiger Panthera tigris altaica (Temminck, 1844) is currently restricted to a small region of its original geographical range in northwestern Asia and is considered 'endangered' by the IUCN Red List of Threatened Species. This solitary, territorial, and large top predator is in major need of genomic resources to inform conservation management strategies. This study formally tested if complete mitochondrial genomes of P. tigris altaica can be assembled from non-enriched metagenomic libraries generated from scat eDNA samples using the Illumina sequencing platform and open-access bioinformatics pipelines. The mitogenome of P. tigris altaica was assembled and circularized using the pipeline GetOrganelle with a coverage ranging from 322.7x to 17.6x in four different scat eDNA samples. A nearly complete mitochondrial genome (101x) was retrieved from a fifth scat eDNA sample. The complete or nearly complete mitochondrial genomes of P. tigris altaica were AT-rich and composed of 13 protein coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and a putative control region. Synteny observed in all assembled mitogenomes was identical to that reported before for P. tigris altaica and other felids. A phylogenomic analysis based on all PCGs demonstrated that the mitochondrial genomes assembled from scat eDNA reliably identify the sequenced samples as belonging to P. tigris and distinguished the same samples from closely and distantly related congeneric species. This study demonstrates that it is viable to retrieve accurate whole and nearly complete mitochondrial genomes of P. tigris altaica (and probably other felids) from scat eDNA samples without library enrichment protocols and using open-access bioinformatics workflows. This new genomic resource represents a new tool to support conservation strategies (bio-prospecting and bio-monitoring) in this iconic cat.


Assuntos
Genoma Mitocondrial , Tigres , Animais , Tigres/genética , Genoma Mitocondrial/genética , Espécies em Perigo de Extinção , Metagenômica , Metagenoma
12.
Gene ; 845: 146847, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058495

RESUMO

The roosterfish Nematistius pectoralis is considered as one of the most magnificent sportfishes worldwide. This study developed the first genomic resource for this trophy-fish that is heavily targeted by the fly-fishing industry. The complete mitochondrial genome of N. pectoralis was assembled using short read sequences and analyzed in detail. The mitochondrial genome of N. pectoralis is 16,537 bp in length and comprises 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (12S and 16S), and 22 transfer RNA genes. A long intergenic space 770 bp in length was assumed to be the d-loop or Control Region (CR). Most of the PCGs and tRNA genes are encoded in the l-strand. All PCGs are under purifying selection and atp8 and nad6 experienced the least selective pressure. All tRNAs exhibit a cloverleaf secondary structure except tRNA-Serine 1 that lacked the d-arm loop. The d-loop of N. pectoralis exhibits three domains commonly described in other fishes; extended terminal associated sequences (ETAS), central, and conserved sequence block (CSB). A ML phylogenetic reconstruction of the newly recognized order Carangiformes based on all 13 mitochondrial PCGs did not support the monophyly of this clade but recognized several families as monophyletic, including Bothidae, Carangidae, Istiophoridae, Latidae, Paralichthyidae, Polynemidae, and Rhombosoleidae. Nematistius pectoralis was sister to a clade composed of Toxotes chatareus (fam. Toxotidae) + Lactarius lactarius (fam. Lactariidae). This genomic resource developed for N. pectoralis will aid in improving our understanding of the population genomics of and strengthen conservation and management strategies in this remarkable trophy-fish.


Assuntos
Genoma Mitocondrial , Animais , Peixes/genética , Genoma Mitocondrial/genética , Brânquias , Filogenia , RNA de Transferência/química , RNA de Transferência/genética , Serina
13.
Zootaxa ; 5150(2): 189-216, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36095752

RESUMO

Historically, Lysmata vittata has been reported with a near global non-polar distribution. Early studies reported a wide morphological variation in this species, which served as a basis for further synonymization of at least four species. Herein, we investigated the species diversity within L. vittata complex and tested whether L. rauli and L. durbanensis are valid species instead of junior synonyms of L. vittata. Our integrated morphological and molecular data strongly supports the validity of at least six taxonomic entities within the broader L. vittata complex, including L. rauli and L. durbanensis and three undescribed species. Multivariate analyses highlighted prominent morphological differences in accessory branch structure of dorsolateral antennular flagellum, number of carpal and meral segments of the second pereopod, and color pattern which segregated shrimps into distinct morpho-groups. Phylogenetic analyses supported morphological groupings and recovered five widely divergent lineages, which corresponded to the morphological groupings: L. vittata sensu stricto; L. rauli sensu stricto; L. sp. CHINA; L. sp. AUS1; and L. sp. AUS2. Therefore, we formally resurrect L. rauli to valid species status and posit it is native to the subtropical and tropical Indo West-Pacific. Although data were limited, we also formally resurrect L. durbanensis to valid species status from southern Africa. Our results imply L. vittata and L. rauli are exotic species in the western Atlantic, New Zealand, and the Mediterranean. This study provides a solid framework to continue untangling the historic L. vittata species complex, which is likely to include additional species to the ones included in the present study.


Assuntos
Decápodes , Animais , Filogenia
14.
PeerJ ; 10: e13440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669959

RESUMO

Baird's tapir, or the Central American Tapir Tapirus bairdii (family Tapiridae), is one of the largest mammals native to the forests and wetlands of southern North America and Central America, and is categorized as 'endangered' on the 2014 IUCN Red List of Threatened Species. This study reports, for the first time, the complete mitochondrial genome of T. bairdii and examines the phylogenetic position of T. bairdii amongst closely related species in the same family and order to which it belongs using mitochondrial protein-coding genes (PCG's). The circular, double-stranded, A-T rich mitochondrial genome of T. bairdii is 16,697 bp in length consisting of 13 protein-coding genes (PCG's), two ribosomal RNA genes (rrnS (12s ribosomal RNA and rrnL (16s ribosomal RNA)), and 22 transfer RNA (tRNA) genes. A 33 bp long region was identified to be the origin of replication for the light strand (OL), and a 1,247 bp long control region (CR) contains the origin of replication for the heavy strand (OH). A majority of the PCG's and tRNA genes are encoded on the positive, or heavy, strand. The gene order in T. baiirdi is identical to that of T. indicus and T. terrestris, the only two other species of extant tapirs with assembled mitochondrial genomes. An analysis of Ka/Ks ratios for all the PCG's show values <1, suggesting that all these PCGs experience strong purifying selection. A maximum-likelihood phylogenetic analysis supports the monophyly of the genus Tapirus and the order Perissodactyla. The complete annotation and analysis of the mitochondrial genome of T. bairdii will contribute to a better understanding of the population genomic diversity and structure of this species, and it will assist in the conservation and protection of its dwindling populations.


Assuntos
Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Filogenia , Herbivoria , Florestas , Perissodáctilos , Genômica
15.
BMC Genomics ; 23(1): 320, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459089

RESUMO

BACKGROUND: Whole mitochondrial genomes are quickly becoming markers of choice for the exploration of within-species genealogical and among-species phylogenetic relationships. Most often, 'primer walking' or 'long PCR' strategies plus Sanger sequencing or low-pass whole genome sequencing using Illumina short reads are used for the assembling of mitochondrial chromosomes. In this study, we first confirmed that mitochondrial genomes can be sequenced from long reads using nanopore sequencing data exclusively. Next, we examined the accuracy of the long-reads assembled mitochondrial chromosomes when comparing them to a 'gold' standard reference mitochondrial chromosome assembled using Illumina short-reads sequencing. RESULTS: Using a specialized bioinformatics tool, we first produced a short-reads mitochondrial genome assembly for the silky shark C. falciformis with an average base coverage of 9.8x. The complete mitochondrial genome of C. falciformis was 16,705 bp in length and 934 bp shorter than a previously assembled genome (17,639 bp in length) that used bioinformatics tools not specialized for the assembly of mitochondrial chromosomes. Next, low-pass whole genome sequencing using a MinION ONT pocket-sized platform plus customized de-novo and reference-based workflows assembled and circularized a highly accurate mitochondrial genome in the silky shark Carcharhinus falciformis. Indels at the flanks of homopolymer regions explained most of the dissimilarities observed between the 'gold' standard reference mitochondrial genome (assembled using Illumina short reads) and each of the long-reads mitochondrial genome assemblies. Although not completely accurate, mitophylogenomics and barcoding analyses (using entire mitogenomes and the D-Loop/Control Region, respectively) suggest that long-reads assembled mitochondrial genomes are reliable for identifying a sequenced individual, such as C. falciformis, and separating the same individual from others belonging to closely related congeneric species. CONCLUSIONS: This study confirms that mitochondrial genomes can be sequenced from long-reads nanopore sequencing data exclusively. With further development, nanopore technology can be used to quickly test in situ mislabeling in the shark fin fishing industry and thus, improve surveillance protocols, law enforcement, and the regulation of this fishery. This study will also assist with the transferring of high-throughput sequencing technology to middle- and low-income countries so that international scientists can explore population genomics in sharks using inclusive research strategies. Lastly, we recommend assembling mitochondrial genomes using specialized assemblers instead of other assemblers developed for bacterial and/or nuclear genomes.


Assuntos
Genoma Mitocondrial , Sequenciamento por Nanoporos , Nanoporos , Tubarões , Animais , Benchmarking , Genoma Mitocondrial/genética , Ouro , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Análise de Sequência de DNA/métodos , Tubarões/genética
16.
PeerJ ; 10: e12749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111396

RESUMO

BACKGROUND: Hoplolaimus galeatus is a plant-parasite nematode with a broad range of hosts. This nematode is known to damage cotton, corn, and soybean crops. Hoplolaimus galeatus is also an economically important pest of turfgrasses. Despite its economical importance, no genomic resources exist for this parasite. METHODS: Using 300 bp paired-end short read sequencing, this study estimated genome size, analyzed a nearly complete mitochondrial chromosome, and explored nuclear repetitive elements, including microsatellites, in H. galeatus for the first time. The phylogenetic placement of H. galeatus in the superfamily Tylenchoidea was also examined. RESULTS: The average haploid genome size estimated using a k-mer approach was 517.69 Mbp. The partially assembled mitochondrial genome of H. galeatus is 16,578 bp in length and comprised of 11 protein-coding genes, two ribosomal RNA genes, and 16 transfer RNA genes. A maximum likelihood phylogenetic analysis confirmed the monophyly of the genus Hoplolaimus and the superfamily Tylenchoidea. Repetitive elements constituted  50% of the nuclear genome while half of the genome represented single- or low-copy sequences. A large portion of repetitive sequences could not be assigned to known repeat element families. Considering only annotated repetitive elements, the most ubiquitous belonged to Class II- Subclass 2-Maverick elements, Class I-LTR-Ty-3/Bel-Pao elements, and satellites. 45S ribosomal DNA was also abundant and a total of 36 SSRs were identified.This study developed genomic resources for the plant-parasitic nematode Hoplolaimus galeatus that will contribute to the better understanding of meta-population connectivity and putative genomic mechanisms involved in the exploitation of the broad range of host plants used by H. galeatus.


Assuntos
Genoma Mitocondrial , Tylenchoidea , Animais , Tylenchoidea/genética , Filogenia , Mapeamento Cromossômico , Sequência de Bases , Genoma Mitocondrial/genética
17.
Phytopathology ; 112(4): 881-887, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34495679

RESUMO

Ditylenchus gallaeformans is a plant parasitic nematode that induces galls on aboveground parts of Melastomataceae plants. It differs from most gall-inducing nematodes in that it is not an endoparasite and has been considered as a possible biological control agent against invasive species of Miconia. Little is known about D. gallaeformans biology, genetic differences among populations, and host preferences. This study examined the genetic differences among D. gallaeformans populations from different locations and host species and the phylogenetic relationships among them. Nematodes were collected from galls in plants from Costa Rica, Dominica, and Trinidad. The Cytochrome c oxidase 1 (cox1) region was sequenced from a total of 33 individual nematodes isolated from 33 different plant individuals, representing 21 species of Melastomataceae. Phylogenetic reconstructions, haplotype networks, and analysis of molecular variance showed that the species is monophyletic and has three major clades, which were mostly consistent with geographic location but not with host species. The first clade was composed by two subclades, one with individuals from Costa Rica and one with individuals from Dominica. The second and third clades comprised nematodes only from Trinidad. Overall, there is no evidence of host-species specialization in D. gallaeformans. Biocontrol efforts using the nematode against invasive Miconia could focus on geographical location matching but likely will not need to match host species.


Assuntos
Melastomataceae , Nematoides , Tylenchida , Animais , Genética Populacional , Melastomataceae/parasitologia , Nematoides/genética , Filogenia , Doenças das Plantas , Folhas de Planta/parasitologia , Plantas/parasitologia
18.
Mol Biol Rep ; 49(2): 1141-1149, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783988

RESUMO

BACKGROUND: The 'Zacatuche', 'Teporingo', or Volcano rabbit (Romerolagus diazi) belongs to the family Leporidae, is an endemic species restricted to the Central part of the Trans-Mexican Volcanic Belt, and is considered 'endangered' by the IUCN Red List of Threatened Species. METHODS AND RESULTS: This study reports, for the first time, the complete mitochondrial genome of R. diazi and examined the phylogenetic position of R. diazi among other closely related co-familiar species using mitochondrial protein-coding genes (PCGs). The mitogenome of R. diazi was assembled from short Illumina 150 bp pair-end reads with a coverage of 189x. The AT-rich mitochondrial genome of R. diazi is 17,400 bp in length and is comprised of 13 PCGs, two ribosomal RNA genes, and 22 transfer RNA genes. The gene order observed in the mitochondrial genome of R. diazi is identical to that reported for other leporids. Phylogenetic analyses based on PCGs support the basal position of Romerolagus within the Leporidae, at least when compared to the genera Oryctolagus and Lepus. Nonetheless, additional mitochondrial genomes from species belonging to the genera Bunolagus, Sylvilagus, and Pronolagus, among others, are needed before a more robust conclusion about the derived vs basal placement of Romerolagus within the family Leporidae can be reached based on mitochondrial PCGs. CONCLUSIONS: This is the first genomic resource developed for R. diazi and it represents a tool to improve our understanding about the ecology and evolutionary biology of this iconic and endangered species.


Assuntos
Genoma Mitocondrial/genética , Lagomorpha/genética , Mitocôndrias/genética , Animais , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Ordem dos Genes , México , Filogenia , RNA de Transferência/genética , Coelhos/genética
19.
Genes (Basel) ; 12(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34828317

RESUMO

The 'Pez Gallo' or the Roosterfish, Nematistius pectoralis, is an ecologically relevant species in the shallow water soft-bottom environments and a target of a most lucrative recreational sport fishery in the Central Eastern Pacific Ocean. According to the International Union for Conservation of Nature, N. pectoralis is assessed globally as Data Deficient. Using low-coverage short Illumina 300 bp pair-end reads sequencing, this study reports, for the first time, the genome size, single/low-copy genome content, and nuclear repetitive elements, including the 45S rRNA DNA operon and microsatellites, in N. pectoralis. The haploid genome size estimated using a k-mer approach was 816.04 Mbp, which is within the range previously reported for other representatives of the Carangiformes order. Single/low-copy genome content (63%) was relatively high. A large portion of repetitive sequences could not be assigned to the known repeat element families. Considering only annotated repetitive elements, the most common were classified as Satellite DNA which were considerably more abundant than Class I-Long Interspersed Nuclear Elements and Class I-LTR Retroviral elements. The nuclear ribosomal operon in N. pectoralis consists of, in the following order: a 5' ETS (length = 948 bp), ssrDNA (1835 bp), ITS1 (724 bp), a 5.8S rDNA (158 bp), ITS2 (508 bp), lsrDNA (3924 bp), and a 3' ETS (32 bp). A total of 44 SSRs were identified. These newly developed genomic resources are most relevant for improving the understanding of biology, developing conservation plans, and managing the fishery of the iconic N. pectoralis.


Assuntos
Perciformes/genética , RNA Nuclear/genética , RNA Ribossômico/genética , Sequenciamento Completo do Genoma/métodos , Animais , Conservação dos Recursos Naturais , Evolução Molecular , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Anotação de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico
20.
Zootaxa ; 5039(4): 495-517, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34811066

RESUMO

Thor amboinensis (De Man, 1888), known as sexy shrimp or anemone squat shrimp and popular among divers and aquarists, was previously believed to have a worldwide distribution, with populations throughout the tropical parts of the Indo-Pacific and Atlantic Ocean. However, consistent differences in some details of the colour pattern strongly suggest that T. amboinensis does not represent a single species, but a pantropical species complex. A recent phylogeographic analysis of T. amboinensis based on molecular data confirmed that this taxon is composed of at least five putative cryptic or pseudocryptic species. In the present study, a new cryptic species, Thor dicaprio sp. nov., is established for the western Atlantic populations previously referred to as T. amboinensis. The new species can be distinguished from all other members of the T. amboinensis complex by two differences in the colour pattern and a subtle difference in the size and setation of the appendix masculina, the latter yet to be confirmed. The conspicuous red-white banding of the antennal flagella appears to be the most diagnostic feature of the new species. In addition, T. dicaprio sp. nov. forms a genetically distinctive, homogeneous, tropical western Atlantic (TWA) clade, with the COI pairwise genetic distances from other clades ranging from 8.8% to 19.2%. The distribution of T. dicaprio sp. nov. includes the entire Caribbean Sea, parts of the Gulf of Mexico, Florida, Bahamas, Bermuda, as well as some offshore localities off northern and eastern Brazil. The main aspects and biology and ecological variability of T. dicaprio sp. nov. are discussed in the light of phylogeographic data presently available for the T. amboinensis complex.


Assuntos
Decápodes , Distribuição Animal , Estruturas Animais , Animais , Decápodes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA